If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+2n-16=0
a = 6; b = 2; c = -16;
Δ = b2-4ac
Δ = 22-4·6·(-16)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{97}}{2*6}=\frac{-2-2\sqrt{97}}{12} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{97}}{2*6}=\frac{-2+2\sqrt{97}}{12} $
| 5d+5=25 | | (x/x-5)+(5/x+5)=(1/x^2-25) | | x+109=x+79 | | 25=-9g+7 | | 3x*4)^2=100 | | 5y-5(2y/6)=15 | | 2(4x-8)=8x+17 | | 2/12x9/12=x | | -4p+12=-8 | | (-6)-x/4=(-5) | | -7(-5x+3)=399 | | 4(2u+1)=6u+8 | | y/10+20=-10 | | 12-x=-1+8 | | –44+r=–45 | | 5^x+2=4^2x-3 | | X+19=x+89 | | 25^x=369 | | 6=-8/7+x | | 4x+4=4-3 | | -2y+12=3+3y | | 4/7k=16 | | 5x+9=-6x+2 | | X+300=y | | 8x+85=14 | | 10g-5g+12-7=2g+6+8+6 | | 6=0.333333333(8+x) | | 6b+9=−8 | | 9y÷2y+1=9 | | 3(x-1)=6x-5-3x | | C-11=22-2x | | 2v^2+8/v^2-5v-14=0 |